THE FORMULA SHEET

Ram Srinivasan, MD, PhD (ram@corephysicsreview.com)

X-ray Production & Interaction

k-shell binding energies (keV)

Мо	Rh	Ag	W	lodine	Barium
20	23	25	70	33	37
k-edge ~ k-shell hinding energy					

*k-edge ≈ k-shell binding energy

characteristic energies (keV)

Мо	Rh			
18 & just below 20	20 and just below 23			
PE absorption $\ltimes Z^3/E^3$				

• Compton Scatter $\ltimes 1/E$

· Prob(PE) = Prob(Compton) @ 25 keV soft tissue @ 40 keV bone

HVL = thickness needed for transmitted x-ray beam intensity to be 50% of initial beam intensity
ex.) 3 HVL attenuation = (1/2) x (1/2) x (1/2) = (1/8)
=> 1/8th of incident beam is transmitted. Caution: don't confuse absorbed vs. transmitted.

Projection Radiography

 15% 个in kVp increases efficiency of x-ray production, requiring only half the initial mA-s to keep the same total number of photons.

Film-	Indirect	Direct	CR
Screen	Digital	Digital	
screen +	CsI	amorphous	PSP
film	scintillator	selenium	

 \cdot assume AEC in effect when in doubt

geometric magnification = SID/SOD

3 Determinants of Resolution

(1) Detector (pitch), (2) Motion (exposure time, compression paddles), (3) Effective Focal Spot Size (filament size, geometric blurring, anode angle)

Fluoroscopy

deterministic risk: AK in [Gy]

stochastic risk: KAP = AK x area in [Gy·cm²] JC Sentinel Event if >15 Gy fluoro to single field @1m, operator gets 1/1000th of dose to patient safety: <u>time</u>, distance, shielding collimation decreases KAP magnification increases AK (II > FPD) and improves spatial resolution for II, and improves spatial resolution for FPD only when binning turned off.

Mammography

- · Target/Filter Combinations
- $\rightarrow \rightarrow \rightarrow$ increasing breast density
- Mo/Mo, Mo/Rh, Rh/Rh, W/Ag
- · focal spot: 0.1mm mag, 0.3mm reg
- PNL within 1 cm between CC & MLO
- ACR Phantom: 4.2cm, 50% glandular
- \cdot (fiber, spec groups, masses)
- Old: (6,5,5), passing (4,3,3)
- New: 😈 (6,6,6), passing (2,3,2)

Breast MR: 0.1 mmol/kg gad, perform during days
 7-13 of menstrual cycle, first delayed phase image within 2 minutes of contrast injection

Computed Tomography (CT)

beam pitch = <u>distance table traveled in one rotation</u> beam thickness beam pitch > 1: ↓ dose, worse resolution

beam pitch < 1: \uparrow dose, better resolution

keep pitch < 2; "pitch" = "beam pitch" Cardiac CT: prospective gating target 50-60 bpm. retrospective gating \uparrow dose, but allows diast+syst imaging separately, hence EF can be calculated. CNR $\ltimes \sqrt{voxel \ volume}$

16cm head phantoms, 32cm body phantoms; these phantoms underestimate dose to peds, and overestimate dose to obese (fat protects organs)
CTDIvol = (2/3 periph + 1/3 central)/pitch, in [Gy]
DLP = CTDIvol x scan length, in [Gy-cm], approximates cancer risk using conversion factor

Ultrasound

 $c_{soft tissue}$ =1540 m/s; c_{bone} > $c_{soft tissue}$ > c_{fat}

c = TF x λ , where TF = transducer freq. (in Hz),

 λ wavelength (in meters)

· axial res = SPL/2, where SPL $\approx 2\lambda$

• "axial res" here is smallest distance resolvable

between two features. "Better" is smaller number.

- \cdot FOV_{axial} = c x PRP / 2
- \cdot PRF = 1/PRP

· Don't confuse TF with PRP. \uparrow TF \rightarrow better ax/lat/elev res + worse attenuation. \uparrow PRP \rightarrow deeper axial FOV and slower screen refresh rate.

 \cdot lat/elev res best in focal zone, \cdot also \uparrow scan line density \rightarrow better lateral res

attenuation of sound in soft tissue (dB) = 0.5
dB/cm/MHz, where MHz is TF, cm is total distance traveled. Total distance (roundtrip) traveled by an ultrasound pulse is 4 cm for lesion of depth 2 cm.
depth-resolution tradeoff: use the highest frequency that penetrates deep enough for you to see the

structure you're interested in. \uparrow TF \rightarrow better

ax/lat/elev resolution but greater attenuation per cm of

tissue depth •Thermal Index (TI) - heating

•Mech. Index (MI) - cavitation risk

Nuclear Medicine

Activity in Becquerel (Bq) is decays per second 1 mCi = 37 MBq

 $1/(effective t_{1/2}) = 1/(physical t_{1/2}) + 1/(biological t_{1/2})$

ĺ	Radioisotope Physical Half-Lives					
	Tc99m	I-123	I-131	Ind, Thal, Ga	Xe- 133	F-18
	6 hrs	13 hr	8 d	3 d	5 d	110 min

Gamma Energies (keV)					
Tc99m	I-123	I-131	Ga-67	Xe-133	F-18
140	159	365	~100, 200, 300, 400	81	511

Activity Exponential Decay: A(t) = A₀exp(- λ t) λ is decay constant, A₀ is initial activity at t=0 Half-life (t_{1/2}) can be calculated using t_{1/2} = 0.693/ λ Activity remaining at N half-lives is A₀(1/2)^N Milk the Mo-Tc generator q24 hrs x 5 days Mo breakthrough - 700 keV photons Aluminum breakthrough - color strip

Gamma Camera QC

corephysicsreview.com

daily: extrinsic uniformity, photopeak weekly: intrinsic uniformity, bar phantom (linearity, spatial resolution) monthly: center of rotation (COR) quarterly: Jascszak phantom

Dose Calibrator QC

Constancy (daily) Linearity (quarterly) Accuracy (annually) Geometry (on repair)

MRI

Larmor Freq = (42 MHz/T) x B Longitudinal (T1) relaxation - spin-lattice Transverse (T2) relaxation - spin-spin

Weighting	TR	TE
T1	short	short
Т2	long	long
Proton Density	long	short
Proton Density	long	short

spin-echo TR: short (<500ms), long (>1500ms) spin-echo TE: short (<30ms), long (>150ms)

Scan Time = (NEX) x (# slices) x TR x Ny

turbo factor

NEX = number of repetitions (a.k.a. NSA) Ny = # phase encoding steps

turbo factor = 1 for regular spin-echo

 $SNR \propto voxel volume \times \sqrt{\frac{\#measurements}{receiver bandwidth}}$

 N_x : # freq encoding steps, N_y : # phase encoding steps # measurements = $N_x \ x \ N_y \ x \ NEX$

voxel volume =
$$\left(\frac{FOV_x}{N_x} \cdot \frac{FOV_y}{N_y} \cdot \Delta\right)$$

- Δ : z-axis slice thickness
- $\cdot \uparrow$ voxel volume \rightarrow worse resolution, \uparrow SNR
- $\cdot \uparrow N_y \rightarrow \uparrow pixels$ in phase encoding axis, \uparrow scan time

· \uparrow receiver bandwidth \rightarrow \downarrow chem shift Type 1, \downarrow SNR,

↓scan time (from shorter echo) · Change TE to remove chemical shift Type 2 · FDA limit whole-body SAR: 4 W/kg for 15 min

Macrocyclic vs Linear

macrocyclic better for chelation, decreased NSF risk NSF risk by ACR Group: 2 (low, GFR screening optional), 1 (high, avoid for GFR<30, dialysis, AKI), 3 (insufficient info – treat like 2).

Radiation Dose Units & Nucs Safety

See <u>Radiology Simplified</u>